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Abstract 

An elementary proof of Gleason's theorem for pure states in a Hilbert space is given. 
This theorem follows from a general result concerning plane frame functions in real 
inner product spaces. 

1. Introduction 

Gleason's theorem (Gleason, 1957) for states in a Hilbert space is a 
cornerstone of the mathematical foundations of quantum mechanics and 
is one of the most profound theorems that have been proved in this subject 
so far (Jauch, 1968 ; Mackey, 1963 ; Varadarajan, 1968). The proof is fairly 
long and complicated, involving such notions as representations of the 
rotation group together with intricate, delicate arguments in spherical 
geometry. Since the time of Gleason's proof (1957) mathematicians and 
physicists have sought to find simpler proofs (Brown, 1968) and generaliza- 
tions for example to states on yon Neumann algebras. Of course, one of 
the hopes in finding simpler proofs is that generalizations may then be 
easier to discover. 

In this paper we give an elementary proof of Gleason's theorem for pure 
states. Although this does not give Gleason's full theorem it does give an 
important part of the theorem. Since physicists are usually concerned with 
pure states this part of Gleason's theorem is extremely important as far 
as applications are concerned. The proof is self-contained and elementary 
to the extent that it requires only a rudimentary knowledge of real analysis. 
We first prove a quite general lemma and a theorem which seem to have 
interest in their own right. Gleason's theorem for pure states then follows 
as a simple corollary. Many of the ideas of the following proofs may be 
found in Piron's survey (Piron, 1970) where a geometrical argument is 
given. In the following proofs purely analytic arguments are given which 
may produce new insights to the problem. 
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2. Plane Frame Functions and States 

Let X be a real inner p roduc t  space with inner p roduc t  ( . , . )  and n o r m  
txi = ( x , x )  z/z. I f  x, y e X are o r thogona l  we write x _i_ y. We denote the 
real line by R and the non-negat ive real line by R +. 

Lemma 1. Let  dim X ~  2 and f :  X -+ R sa t is f iesf (x  + y) < f ( y )  whenever  
x 5_ y. T h e n f i s  decreasing in the sense tha t  Ix] < IY] i m p l i e s f ( y )  < . f ( x )  
a n d f i s  cont inuous  on a dense subset  o f  X. 

P r o o f  We first show tha t  f(c~y)<,<f(y) for  ~ >  1. Let x satisfy Ix[ = 1 
and  x _k y and let z = (e - 1)y - (e - 1) I/z [y]x. Then  

z _t_ y + (~ - l) 1/z IY[ x 
so tha t  

f (eY) = f  (Y + (~ - 1) l/z ]yl x + z) <~f(y  + (o~ - t) l/z lYl x)  < / ( y )  

Clearly f ( y )  < f ( 0 ) .  N o w  suppose [Yi > Ix[ > 0 and let M be the two- 
d imensional  subspace generated by x and y. Let  n > 4 be a positive integer 
and  let xl E M  satisfy xi A_x, Ix11= [x]tanrr/n. Let x z e M  satisfy 
xz _l_ x +  x l ,  ( x a , x l )  >I 0 and Ixzl = Ix + x, l tanrr/n. Cont inuing in this 
way we get 2n vectors:  

x,  yl  = x + x l , . . . ,  yzn-l = X + Xl + . . .  + Xzn_l 

Connect ing  these points  we obtain  a plane 2n-sided polygon P,.  N o w  

lYt [ = Ix[ (cos zr/n) - l  . . . .  , [Y,[ = [xt (cos zr/n) -n 

IY,+~ I = Ixl (C~ rr/n)-n+l, "" ", lYE,-, I = Ixl (cos 7r/n) -1 

I t  is thus clear tha t  y ,  is the poin t  on P,  with largest norm.  Applying 
L 'Hosp i t a t s  rule to the funct ion ( logcosTr/x)x -~ we conclude tha t  
lira (cos 7r/n)" = 1. Therefore  there is a positive integer n such tha t  l Y[ > [Y, ] 
n--~oo 

where y ,  is the nth ver tex  of  the polygon P,.  I t  follows that  there exists 
0 </3  < 1 such tha t /3y  ~ P. .  Hence  there is an integer 1 < m -<< 2n - 1 and 
a n u m b e r  y ~> 0 such that  

f l y =  x + xl  + . . .  + xm-1 + y x m  

We then have 

f ( y )  < f ( / 3 y )  <~f(x + x ,  + . . .  + xm-,)  <~... <~f(x) 

To s h o w f i s  cont inuous on a dense subset o f  X, let I x0[ = 1 and S={LXo: ?~e R}. 
Since f restricted to S is decreasing using the wel l -known fact that  a 
decreasing real-valued funct ion on R is cont inuous except for  a countable  
subset  o f  R, we conclude tha t  f restricted to S is cont inuous  on a dense 
subset  S of  S. Let 0 ~ x ~ S. T o  show that  f ( n o t f r e s t r i c t e d  to S)  is con- 
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finuous at x, let xt be a sequence converging to x. Clearly we can assume 
xt 2. x. Now let st = (x~,x~x and rl = lxi[2(x, xt~-lx.  Then sl, rt ~ S and 

(rt - xi) • x~, (xt - st) _1_ st, i = 1 ,2 , . . .  
Hence 

.f(rt) = f ( r t  - x, + xt) <~f(x,) = f ( x i  - st + si) <~f(s,) 

Since st, r~ both converge to x we have 

l imf( r l )  = l imf(s i )  = f ( x )  
t-)co t-)co 

so lim f (xt) = f  (x). Thus f i s  continuous on ~. It  follows tha t f i s  continuous 
t-->CO 

on a dense subset of  X. 
We say that two vectors x, y e X are conjugate if (x , y}  = - 1 .  It  is clear 

that 0 is not conjugate to any vector and if x r 0 then x and - ]x [ -Zx  are 
conjugate. I t  is also clear that x and y are conjugate if and only if 
y = - l x l - 2 x  + z where z _l_ x. I f  (x , y}  = - 1  we call the point 

w(x,y) = (2 + Ix[ 2 + ly12) -~ [(1 + Ix[Z)y + (1 + [y[2)x] 

the specialpoint for x and y. It  is clear f rom its form that w(x,y) = w(y,x),  
that w(x,y) lies on the straight line f rom x to y and it is easy to check that 
w(x,y) A_ w(x,y) - x, w(x,y) A_ w(x,y) - y. These last two properties also 
characterize w(x,y). 

Now there are many functions f :  X -+ R that satisfy the hypothesis of  
Lemma 1. For  example f ( x ) - -~ ( /3+7]x I~ )  -1, c~, /3, 7, 3 > 0  is such a 
function. However, the function f ( x ) =  (1 + Ixl2) -~ has the important  
further property that f ( x ) + f ( y ) = f ( w ( x , y ) )  whenever ( x , y ) = - 1  as 
is easy to check. We call a function f :  X - +  R + a plane frame function if 
f ( x )  + f ( y )  = f ( w ( x , y ) )  whenever ( x , y )  = -1 .  One can check that if x, y, z 
are mutually conjugate then w ( x , y ) = - I z l - Z z .  It follows that f :  X--~ R + 
is a plane frame function if and only if f (x) -~f(--lxl-Zx) =f(0) for all 
x r 0 a n d f  (x) + f (y) + f  (z) = f  (0) whenever x, y, z are mutually conjugate. 
We thus see that our plane frame function is a 'f lat tened'  version of Gleason's 
frame function. Our main theorem shows that there is essentially only one 
plane frame function. 

Theorem 2. I f  dim X>~ 2, then f :  X - +  R + is a plane frame function if 
and only if f (x) = f ( 0 ) ( 1  + Ix]Z) - ' l .  

Proof. Sufficiency has already been shown. For  necessity we first show 
t h a t f  (x + y) <~f(y) i f x  A_ y. Clearly the inequality holds i f x  = 0. I f y  ~- 0, 
x r  then f ( x  +y )  = f ( x )  = f ( 0 ) - f ( - ] x [ - 2 x )  <f(O)  = f ( y ) .  Now 
suppose x, y v a 0, x • y. Let z be the point on the straight line through y 
and x + y that is conjugate to x + y. It  is easily checked that w(z, x + y) = y 
and h e n c e f  (x + y) <~f(x + y) + f ( z )  = f ( y ) .  It follows from Lemma 1 that 
f i s  continuous on a dense set in X. Suppose x and y are conjugate points 
and f is continuous at x. We now show f is continuous at y. Let r~ be a 
sequence converging to y. Since y r 0 we can assume rt ~ 0, i - -  1, 2 . . . . .  

24 
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Let z = (1 - A)y + ~x for some 0 < A < 1. We can assume ri ~ z, i = 1,2 . . . . .  
Let 

rt ' = (I - At)rt + Atz and s~=(1  - t ,~)r t+tztz  
w h e r e  

)~t = - (1  + (rt, z))([z] 2 - (r,,z) -l and /,, = - ( t  + lrtl2)((rt, z) - Irt]Z) -1 

N o w  rt and s~ are conjugate points and z and rt' are conjugate points. Also 
we see that  st converges to x. Indeed 

l i ras ,  = ( ( z , y )+ 1 ) ( ( z , y ) -  lyl2)-~y- (1 + ly lZ)( (z ,y) -  lylZ)z 
i -+r  ! 

= ( ) t -  1)~-l y + 2t-l z=  x 

Similarly 

lim r~' = (lz] z + 1)(lz] 2 - ( z , y ) ) - l y -  (1 + (z,y))([zl 2 - (y, z ) ) - l z -  zl 
t---)co 

I t  is easy to check that  z and z~ are conjugate and since z and z~ lie on the 
line A~rough x and y we have w(z, zl) = w(x,y). It  follows that  

f (x )  + f ( y )  =f(zl)  + f (z)  

Also since r~, st, z, rt ' are on the line through z and r~ we have 

f(rt) + f(sO = f ( r t ' )  + f(z)  = f ( r / ' )  + f (x )  + f ( y )  - f ( z , )  
Hence  

I f ( rO- f (Y ) I  < If(x) - f ( s , ) l  + I f ( r , ' ) - f (x ) I  + I f (x ) - f ( z~)[  

Let e > 0 be given. Since f is cont inuous at x there is a 3 > 0 such that  
I x - Y 1 < 3 implies I f  (x) - f  (Y) I < e. Clearly a s / / - +  0, X ~ y and zl -+ x. 
Let A be such that  Ix - zll < 3/2. Then for i sufficiently large 

! r i ' - - x  I~< ]r c ' - - z , l + ] z , - x  I~<3 

and  hence If(rt')-f(x)I <~.  It follows that  if i is sufficiently large 
]f(r~) -f(Y)l < 3E s o f i s  cont inuous at y. N o w  let 0 4= xo ~ X. S i n c e f i s  
cont inuous  on a dense set there is a point 0 =/- x not  in the one-dimensional 
subspace generated by x0 at w h i c h f i s  continuous.  Now there is a point  z 
which is conjugate to both  xo and x. By the above, f is cont inuous at z and 
again f is cont inuous  at :~o. N o w  suppose Ix I = iY[ ~- 0. Let zt -+ x and 
Iz~] > ]xtl Then f ( y )  <f(z~) --->fix] and hence f ( y )  >~f(x). Similarly 

f ( y )  <~f(x) s o f ( y )  = f ( x )  a n d f i s  only a function of  distance. Define the 
funct ion g:  R + -+ R + by g(e) = f ( x )  where Ix[ = e. Now g is cont inuous 
except possibly at 0 s ince f i s .  Let A > 0 and /z  >/A -~ and let [xt = A. Then 
there is a point  y conjugate to x such that  ]Yl = /z .  Since f ( x ) + f ( y ) =  
f(w(x,y)) we have 

g(A) + g(/~) = g(Iw(x,y)]) = g[(/z z )~2 _ 1)1/2 (2 + )~2 + / ~ ) - i / 2 ]  

Making  a change of  variables ~ = (1 +/12) -~,/3 = (1 + tzz) -1 and introducing 
the funct ion h(u)=g[(1-u)i/Zu-1/2], 0 < u <  1 it is s traightforward to 
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compute that h(~) + h(~) = h(~ +/~) for 0 < ~, fl < 1/2. Since h is continuous 
it follows that h(~) = 2h(l/2) ~. Hence 

g(A) = 2g(1) (1 + ;~2)-~ and f (x )=g(Ix l )=2f (z ) (1  + IxI2) -~ 

where Iz I = 1 and x r 0. But 2f(z) = f ( z )  + f ( - z )  = f ( 0 )  so 

f (x )  =f (0 ) (1  + ]xlZ) -I for all x 

It is interesting to note that Theorem 2 does not hold in a one-dimensional 
space. Indeed letf(X) be any positive function on R + satisfyingf(h) < f ( 0 )  
for all )t E R +. Define g by g(Z) = f  ()t) if )t >~ 0 and g(h) = f 0 )  - f ( - A - ~ )  
for )t < 0. Then g is a frame function on R which clearly need not be of the 
required form. 

Let H be a Hilbert space and let P ( H )  denote the set of orthogonal 
projections on H. A state is a map m: P(H) -+ [0,1] satisfying 

(t) m(I) = 1 

if the Pi's are mutually orthogonal and the first sum is in the strong operator 
topology. We denote the projection onto the one-dimensional subspace 
generated by a vector 4 v a 0 by Pr A state m is pure if there is a PC such that 
rn(Pr = 1. We now prove Gleason's theorem for pure states. 

Corollary 3. Let H be a real separable Hilbert space of dimension ~>3 
and let m be a pure state satisfying m(Pr l where 141 = 1. If P ~ P(H) 
then re(P) = (P4, 4). 

Proof. If ~b • 4 then 1 >~ m(P 0 + P+) = m(P~) + 1 so m(Po) = 0. Now 
assume 0 r ~b 2 4. Let 0 r 4~ • 4 so that 41, 4 generate the two-dimen- 
sional subspace spanned by 4 and ~b and let 42 be orthogonal to 4~ and 4 
so that 4, 41, 42 span a three-dimensional subspace M. Let P~ be the plane 
in M satisfying P~ = {x e M : ( x , 4 )  = 1}. Now the plane PI can be thought 
of as a two-dimensional real inner product space with origin 4 and inner 
product 

<x,y>l = <x, 4~) <y, 4~) + <x, 4~> <y, 42> 

Define a function f :  Pl -+ R+ b y f ( x ) =  m(P~). If  x and y are conjugate 
points in P~ then 

--1 = (x, y), = (x, 4,) (Y, 4,) + <x, 42) (Y, 42> 
so  

<x,y> = <x, 45 <y, 4> + <x, 4,> <y, 4~) + <x, 4~5 <y, 4~) = o 

and x •  Now z = - ( y , w ( x , y ) ) ( x , w ( x , y ) ) - l x + y  is a vector in the 
subspace generated by x and y which is orthogonal to w(x,y). We now show 
z • 4. Indeed, 

<z, 4> = -<z, w(x,y)) <x,w(x,y)) -~ + i 
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But 

and 

<y, w(x,y)> = (2 + 

= ( 2 +  

S. GUDDER 

lxl~ 2 + lyl,Z) -a (1 + txl~ 2) ly[ z 

IxI ,  2 + iylx2) -~ Ixl z ]y[ z 

!xlt z+  lyl,Z) -~(1 + 1y[, z) lxl z 

[x], z + lyl~Z) -~ lxl = lYl ~ 

(x, w(x,y)> = (2 + 

-~-(2+ 
We thus have 

f (x) + f (y) = m(P~) + m(P,) = m(P~ + Pr) = m(P~(~,,> + P~) 

= m(e,~(,, ,>)+ m(Pz) = m(ew(,.,>) = f (w(x ,  y)) 

s o f i s  a plane frame function. It follows from Theorem 2 that 

m(P~) = f @ ) = f ( 0 )  (1 + I~b112) - 1 =  m(P~) (I + [~bl~z) - '  

Finally if P ~ P ( H )  then there exist mutually orthogonal one-dimensional 
projections Pt such that P = ~L1 P~ so 

re(P) = 2 m(Pl) = 2 < P, ~5, c~) = (~. P, d?, d?) = ( P~5, 4 )  

One can easily see from examples that Corollary 3 does not hold for 
two-dimensional spaces. Although Gleason's full theorem does not hold 
in a nonseparable Hilbert space it is interesting that Corollary 3 does 
generalize to such spaces if we make a slightly more general definition for 
states. IfP~ is a collection of projections we define V P~ to be the projection 
onto the smallest closed subspace containing the ranges of all the P~'s. If  
P~ is a collection of mutually orthogonal projections on a Hilbert space 
and rn a state, since m(1) = 1 we have m(P~) = 0 except for countably many 
~'s. We can therefore generalize the definition of state as follows. We say 
a map m: P ( H )  -+ [0,1] is a state if 

(1) re(I) = 1 

(2) m(V P=) = Z m(P~) 

whenever P~ are mutually disjoint. With this definition of state Corollary 3 
generalizes to nonseparable Hilbert spaces. Indeed, if P is a projection, 
let ~ be an orthonormal basis for the range of P so we obtain 

m(P) = m(V P+)  = 2 m(P+,) = ~ <P+,4, ~) = (~- P(,,~,q~) = (Pq~,~b) 

since q~ .1_ ~b~ for ~ g= 1, 2 , . . .  where ~bl, ~: . . . .  are the vectors satisfying 
m(Pd&) r O. 

One should note that although Corollary 3 is proved for real spaces it 
is an easy step to generalize the proof  so that the Corollary holds for complex 
or even quaternionic spaces (Varadarajan, 1968). Also notice that the full 
generality of Lemma 1 and Theorem 2 are not needed since for the proof  of 
Corollary 3 all one uses is the two-dimensional space P1. 
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